Quasi-uniform convergence topologies on function spaces- Revisited
نویسندگان
چکیده
منابع مشابه
On statistical type convergence in uniform spaces
The concept of ${mathscr{F}}_{st}$-fundamentality is introduced in uniform spaces, generated by some filter ${mathscr{F}}$. Its equivalence to the concept of ${mathscr{F}}$-convergence in uniform spaces is proved. This convergence generalizes many kinds of convergence, including the well-known statistical convergence.
متن کاملcompactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولStatistical uniform convergence in $2$-normed spaces
The concept of statistical convergence in $2$-normed spaces for double sequence was introduced in [S. Sarabadan and S. Talebi, {it Statistical convergence of double sequences in $2$-normed spaces }, Int. J. Contemp. Math. Sci. 6 (2011) 373--380]. In the first, we introduce concept strongly statistical convergence in $2$-normed spaces and generalize some results. Moreover, we define the conce...
متن کاملon statistical type convergence in uniform spaces
the concept of ${mathscr{f}}_{st}$-fundamentality is introduced in uniform spaces, generated by some filter ${mathscr{f}}$. its equivalence to the concept of ${mathscr{f}}$-convergence in uniform spaces is proved. this convergence generalizes many kinds of convergence, including the well-known statistical convergence.
متن کاملNatural topologies on function spaces
ing the above, for a (not necessarily countable) family . . . φ2 // B1 φ1 // Bo of Banach spaces with continuous linear transition maps as indicated, not recessarily requiring the continuous linear maps to be injective (or surjective), a (projective) limit limiBi is a topological vector space with continuous linear maps limiBi → Bj such that, for every compatible family of continuous linear map...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied General Topology
سال: 2017
ISSN: 1989-4147,1576-9402
DOI: 10.4995/agt.2017.7048